|

Paper 4 – Reference list

1 Leave a comment on paragraph 1 0 Here are the references for paper 4. I’ve included PubMed links for most of them so you should be able to look up any background information you need by simply clicking on the link.

2 Leave a comment on paragraph 2 0 1.

3 Leave a comment on paragraph 3 0 Kanaly, R. & Harayama, S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol.182, 2059–2067 (2000).

4 Leave a comment on paragraph 4 0 PubMed

5 Leave a comment on paragraph 5 0 2.

6 Leave a comment on paragraph 6 0 Kweon, O. et al. Polycyclic Aromatic Hydrocarbon Metabolic Network in Mycobacterium vanbaalenii PYR-1. J. Bacteriol. 193, 4326–4337 (2011).

7 Leave a comment on paragraph 7 0 PubMed

8 Leave a comment on paragraph 8 0 3.

9 Leave a comment on paragraph 9 0 Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds – from one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).

10 Leave a comment on paragraph 10 0 PubMed

11 Leave a comment on paragraph 11 0 4.

12 Leave a comment on paragraph 12 0 Kweon, O. et al. A polyomic approach to elucidate the fluoranthene-degradative pathway in Mycobacterium vanbaalenii PYR-1. J. Bacteriol. 189, 4635–4647 (2007).

13 Leave a comment on paragraph 13 0 PubMed

14 Leave a comment on paragraph 14 0 5.

15 Leave a comment on paragraph 15 0 Lee, S. E., Seo, J. S., Keum, Y. S., Lee, K. J. & Li, Q. X. Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14. Proteomics 7, 2059–2069 (2007).

16 Leave a comment on paragraph 16 0 PubMed

17 Leave a comment on paragraph 17 0 6.

18 Leave a comment on paragraph 18 0 Keum, Y. S., Seo, J. S., Hu, Y. & Li, Q. X. Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl. Microbiol. Biotechnol. 71, 935–941 (2006).

19 Leave a comment on paragraph 19 0 PubMed

20 Leave a comment on paragraph 20 0 7.

21 Leave a comment on paragraph 21 0 van Herwijnen, R. et al. Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Res. Microbiol. 154, 199–206 (2003).

22 Leave a comment on paragraph 22 0 PubMed

23 Leave a comment on paragraph 23 0 8.

24 Leave a comment on paragraph 24 0 Akhtar, N., Ghauri, M. A., Anwar, M. A. & Akhtar, K. Analysis of the dibenzothiophene metabolic pathway in a newly isolated Rhodococcus spp. FEMS Microbiol. Lett. 301, 95–102 (2009).

25 Leave a comment on paragraph 25 0 PubMed

26 Leave a comment on paragraph 26 0 9.

27 Leave a comment on paragraph 27 0 Šepič, E., Bricelj, M. & Leskovsek, H. Degradation of fluoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR-1:isolation and identification of metabolites. J. Appl. Microbiol. 85, 746–754 (1998).

28 Leave a comment on paragraph 28 0 PubMed

29 Leave a comment on paragraph 29 0 10.

30 Leave a comment on paragraph 30 0 Mallick, S., Chatterjee, S. & Dutta, T. K. A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)pent-4-enoic acid. Microbiology 153, 2104–2115 (2007).

31 Leave a comment on paragraph 31 0 PubMed

32 Leave a comment on paragraph 32 0 11.

33 Leave a comment on paragraph 33 0 Marx, C. J., Miller, J. A., Chistoserdova, L. & Lidstrom, M. E.Multiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400. J. Bacteriol. 186, 2173–2178 (2004).

34 Leave a comment on paragraph 34 0 PubMed

35 Leave a comment on paragraph 35 0 12.

36 Leave a comment on paragraph 36 0 Prabhu, Y. & Phale, P. S. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl. Microbiol. Biotechnol. 61, 342–351 (2003).

37 Leave a comment on paragraph 37 0 PubMed

38 Leave a comment on paragraph 38 0 13.

39 Leave a comment on paragraph 39 0 Baboshin, M. et al. Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation19, 567–576 (2008).

40 Leave a comment on paragraph 40 0 PubMed

41 Leave a comment on paragraph 41 0 14.

42 Leave a comment on paragraph 42 0 Weissenfels, W. D., Beyer, M. & Klein, J. Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol. 32, 479–484 (1990).

43 Leave a comment on paragraph 43 0 PubMed

44 Leave a comment on paragraph 44 0 15.

45 Leave a comment on paragraph 45 0 Juhasz, A. L., Britz, M. L. & Stanley, G. A. Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h]anthracene by Burkholderia cepaciaJ. Appl. Microbiol.83, 189–198 (1997).

46 Leave a comment on paragraph 46 0 16.

47 Leave a comment on paragraph 47 0 Gordon, L. & Dobson, A. D. Fluoranthene degradation in Pseudomonas alcaligenes PA-10. Biodegradation 12, 393–400 (2001).

48 Leave a comment on paragraph 48 0 PubMed

49 Leave a comment on paragraph 49 0 17.

50 Leave a comment on paragraph 50 0 Rehmann, K., Hertkorn, N. & Kettrup, A. A. Fluoranthene metabolism in Mycobacterium sp. strain KR20: identity of pathway intermediates during degradation and growth. Microbiology 147, 2783–2794 (2001).

51 Leave a comment on paragraph 51 0 PubMed

52 Leave a comment on paragraph 52 0 18.

53 Leave a comment on paragraph 53 0 López, Z., Vila, J., Minguillón, C. & Grifoll, M. Metabolism of fluoranthene by Mycobacterium sp. strain AP1. Appl. Microbiol. Biotechnol. 70, 747–756 (2006).

54 Leave a comment on paragraph 54 0 PubMed

55 Leave a comment on paragraph 55 0 19.

56 Leave a comment on paragraph 56 0 Walter, U., Beyer, M., Klein, J. & Rehm, H.-J. Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. Biotechnol. 34, 671–676 (1991).

57 Leave a comment on paragraph 57 0 20.

58 Leave a comment on paragraph 58 0 Wu, Y. R. et al. Isolation of marine benzo[a]pyrene-degrading Ochrobactrum sp. BAP5 and proteins characterization. J. Environ. Sci. (China) 21, 1446–1451 (2009).

59 Leave a comment on paragraph 59 0 PubMed

60 Leave a comment on paragraph 60 0 21.

61 Leave a comment on paragraph 61 0 Yuan, J., Lai, Q., Zheng, T. & Shao, Z. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int. J. Syst. Evol. Microbiol.59, 2084–2088 (2009).

62 Leave a comment on paragraph 62 0 PubMed

63 Leave a comment on paragraph 63 0 22.

64 Leave a comment on paragraph 64 0 Geiselbrecht, A. D., Hedlund, B. P., Tichi, M. A. & Staley, J. T.Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl. Environ. Microbiol. 64, 4703–4710 (1998).

65 Leave a comment on paragraph 65 0 PubMed

66 Leave a comment on paragraph 66 0 23.

67 Leave a comment on paragraph 67 0 Lai, Q., Cao, J., Yuan, J., Li, F. & Shao, Z. Celeribacter indicus sp. nov. a polycyclic aromatic hydrocarbon-degrading bacterium from deep-sea sediment and reclassification of Huaishuia halophila as Celeribacter halophilus comb. nov. Int. J. Syst. Evol. Microbiol. 64, 4160–4167 (2014).

68 Leave a comment on paragraph 68 0 PubMed

69 Leave a comment on paragraph 69 0 24.

70 Leave a comment on paragraph 70 0 Weissenfels, W., Beyer, M., Klein, J. & Rehm, H. Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl. Microbiol. Biotechnol. 34, 528–535 (1991).

71 Leave a comment on paragraph 71 0 25.

72 Leave a comment on paragraph 72 0 Kim, S. J., Kweon, O., Jones, R. C., Edmondson, R. D. & Cerniglia, C. E. Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation19, 859–881 (2008).

73 Leave a comment on paragraph 73 0 PubMed

74 Leave a comment on paragraph 74 0 26.

75 Leave a comment on paragraph 75 0 Hickey, W. J., Chen, S. & Zhao, J. The phn Island: A New Genomic Island Encoding Catabolism of Polynuclear Aromatic Hydrocarbons. Front. microbiol. 3, 125 (2012).

76 Leave a comment on paragraph 76 0 PubMed

77 Leave a comment on paragraph 77 0 27.

78 Leave a comment on paragraph 78 0 Math, R. K. et al. Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS ONE 7, e35784 (2012).

79 Leave a comment on paragraph 79 0 PubMed

80 Leave a comment on paragraph 80 0 28.

81 Leave a comment on paragraph 81 0 Yagi, J. M., Sims, D., Brettin, T., Bruce, D. & Madsen, E. L. The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ. Microbiol. 11, 2253–2270 (2009).

82 Leave a comment on paragraph 82 0 PubMed

83 Leave a comment on paragraph 83 0 29.

84 Leave a comment on paragraph 84 0 Langille, M. G. & Brinkman, F. S. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25, 664–665 (2009).

85 Leave a comment on paragraph 85 0 PubMed

86 Leave a comment on paragraph 86 0 30.

87 Leave a comment on paragraph 87 0 Beales, N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr. Rev. Food Sci. Food Saf. 3, 1–20 (2004).

88 Leave a comment on paragraph 88 0 31.

89 Leave a comment on paragraph 89 0 Saier, M. H., Jr, Yen, M. R., Noto, K., Tamang, D. G. & Elkan, C. The Transporter Classification Database: recent advances. Nucleic Acids Res. 37, D274–278 (2009).

90 Leave a comment on paragraph 90 0 PubMed

91 Leave a comment on paragraph 91 0 32.

92 Leave a comment on paragraph 92 0 Davidson, A. L., Dassa, E., Orelle, C. & Chen, J. Structure, function, and evolution of bacterial ATP-binding sette systems. Microbiol. Mol. Biol. Rev. 72, 317–364 (2008).

93 Leave a comment on paragraph 93 0 PubMed

94 Leave a comment on paragraph 94 0 33.

95 Leave a comment on paragraph 95 0 Chang, H. K., Dennis, J. J. & Zylstra, G. J. Involvement of two transport systems and a specific porin in the uptake of phthalate by Burkholderia spp. J. Bacteriol. 191, 4671–4673 (2009).

96 Leave a comment on paragraph 96 0 PubMed

97 Leave a comment on paragraph 97 0 34.

98 Leave a comment on paragraph 98 0 Mulligan, C., Fischer, M. & Thomas, G. H. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol. Rev. 35, 68–86 (2011).

99 Leave a comment on paragraph 99 0 PubMed

100 Leave a comment on paragraph 100 0 35.

101 Leave a comment on paragraph 101 0 Chaudhry, M. T. et al. Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicumMicrobiology 153, 857–865 (2007).

102 Leave a comment on paragraph 102 0 PubMed

103 Leave a comment on paragraph 103 0 36.

104 Leave a comment on paragraph 104 0 Hosaka, M. et al. Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6. Appl. Environ. Microbiol. 79, 6148–6155 (2013).

105 Leave a comment on paragraph 105 0 PubMed

106 Leave a comment on paragraph 106 0 37.

107 Leave a comment on paragraph 107 0 Kahng, H. Y., Byrne, A. M., Olsen, R. H. & Kukor, J. J.Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J. Bacteriol. 182, 1232–1242 (2000).

108 Leave a comment on paragraph 108 0 PubMed

109 Leave a comment on paragraph 109 0 38.

110 Leave a comment on paragraph 110 0 Maddocks, S. E. & Oyston, P. C. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154, 3609–3623 (2008).

111 Leave a comment on paragraph 111 0 PubMed

112 Leave a comment on paragraph 112 0 39.

113 Leave a comment on paragraph 113 0 Tropel, D. & van der Meer, J. R. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol. Mol. Biol. Rev. 68, 474–500 (2004).

114 Leave a comment on paragraph 114 0 PubMed

115 Leave a comment on paragraph 115 0 40.

116 Leave a comment on paragraph 116 0 Molina-Henares, A. J., Krell, T., Eugenia Guazzaroni, M., Segura, A. & Ramos, J. L. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol. Rev. 30, 157–186 (2006).

117 Leave a comment on paragraph 117 0 PubMed

118 Leave a comment on paragraph 118 0 41.

119 Leave a comment on paragraph 119 0 Mazur, A., Majewska, B., Stasiak, G., Wielbo, J. & Skorupska, A.repABC-based replication systems of Rhizobium leguminosarum bv. trifolii TA1 plasmids: incompatibility and evolutionary analyses. Plasmid 66, 53–66 (2011).

120 Leave a comment on paragraph 120 0 PubMed

121 Leave a comment on paragraph 121 0 42.

122 Leave a comment on paragraph 122 0 Markowitz, V. M. et al. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res.38, D382–390 (2010).

123 Leave a comment on paragraph 123 0 PubMed

124 Leave a comment on paragraph 124 0 43.

125 Leave a comment on paragraph 125 0 Kuyukina, M. S. & Ivshina, I. B. in Biology of Rhodococcus Vol. 16 Microbiology Monographs (ed Héctor M. Alvarez) Ch. Rhodococcus Biosurfactants: Biosynthesis, Properties, and Potential Applications, 291–313 (Springer, 2010).

126 Leave a comment on paragraph 126 0 44.

127 Leave a comment on paragraph 127 0 Himmelreich, R. et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniaeNucleic Acids Res. 24, 4420–4449 (1996).

128 Leave a comment on paragraph 128 0 PubMed

129 Leave a comment on paragraph 129 0 45.

130 Leave a comment on paragraph 130 0 Velasco-al, P., Wick, L. Y. & Ortega-Calvo, J. J. Chemoeffectors decrease the deposition of chemotactic bacteria during transport in porous media. Environ. Sci. Technol. 42, 1131–1137 (2008).

131 Leave a comment on paragraph 131 0 PubMed

132 Leave a comment on paragraph 132 0 46.

133 Leave a comment on paragraph 133 0 Nie, Y. et al. The genome sequence of Polymorphum gilvum SL003B-26A1T reveals its genetic basis for crude oil degradation and adaptation to the saline soil. PLoS ONE 7, e31261 (2012).

134 Leave a comment on paragraph 134 0 PubMed

135 Leave a comment on paragraph 135 0 47.

136 Leave a comment on paragraph 136 0 Kim, J. S., Chang, J. H., Chung, S. I. & Yum, J. S. Molecular cloning and characterization of the Helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. J. Bacteriol. 181, 6969–6976 (1999).

137 Leave a comment on paragraph 137 0 PubMed

138 Leave a comment on paragraph 138 0 48.

139 Leave a comment on paragraph 139 0 Mukherjee, S., Babitzke, P. & Kearns, D. B. FliW and FliS function independently to control cytoplasmic flagellin levels in Bacillus subtilisJ. Bacteriol. 195, 297–306 (2013).

140 Leave a comment on paragraph 140 0 PubMed

141 Leave a comment on paragraph 141 0 49.

142 Leave a comment on paragraph 142 0 Wilkinson, D. A., Chacko, S. J., Venien-Bryan, C., Wadhams, G. H. & Armitage, J. P. Regulation of flagellum number by FliA and FlgM and role in biofilm formation by Rhodobacter sphaeroidesJ. Bacteriol. 193, 4010–4014 (2011).

143 Leave a comment on paragraph 143 0 PubMed

144 Leave a comment on paragraph 144 0 50.

145 Leave a comment on paragraph 145 0 Macnab, R. M. Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta 1694, 207–217 (2004).

146 Leave a comment on paragraph 146 0 PubMed

147 Leave a comment on paragraph 147 0 51.

148 Leave a comment on paragraph 148 0 Pilsl, H., Smajs, D. & Braun, V. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J. Bacteriol. 181, 3578–3581 (1999).

149 Leave a comment on paragraph 149 0 PubMed

150 Leave a comment on paragraph 150 0 52.

151 Leave a comment on paragraph 151 0 Hacker, J., Blum-Oehler, G., Muhldorfer, I. & Tschape, H.Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23, 1089–1097 (1997).

152 Leave a comment on paragraph 152 0 PubMed

153 Leave a comment on paragraph 153 0 53.

154 Leave a comment on paragraph 154 0 van den Berg, B., Black, P. N., Clemons, W. M., Jr & Rapoport, T. A.Crystal structure of the long-chain fatty acid transporter FadL. Science 304, 1506–1509 (2004).

155 Leave a comment on paragraph 155 0 PubMed

156 Leave a comment on paragraph 156 0 54.

157 Leave a comment on paragraph 157 0 Parales, R. E. & Resnick, S. M. Aromatic ring hydroxylating dioxygenases. Pseudomonas 4, 287–340 (2006).

158 Leave a comment on paragraph 158 0 55.

159 Leave a comment on paragraph 159 0 Pinyakong, O. et al. Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol. Lett. 238, 297–305 (2004).

160 Leave a comment on paragraph 160 0 PubMed

161 Leave a comment on paragraph 161 0 56.

162 Leave a comment on paragraph 162 0 Jouanneau, Y., Meyer, C., Jakoncic, J., Stojanoff, V. & Gaillard, J.Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons. Biochemistry 45, 12380–12391 (2006).

163 Leave a comment on paragraph 163 0 PubMed

164 Leave a comment on paragraph 164 0 57.

165 Leave a comment on paragraph 165 0 Schuler, L. et al. Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl. Microbiol. Biotechnol. 83, 465–475 (2009).

166 Leave a comment on paragraph 166 0 PubMed

167 Leave a comment on paragraph 167 0 58.

168 Leave a comment on paragraph 168 0 Pagnout, C. et al. Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: Expression in Mycobacterium smegmatis mc2155. Res. Microbiol.158, 175–186 (2007).

169 Leave a comment on paragraph 169 0 PubMed

170 Leave a comment on paragraph 170 0 59.

171 Leave a comment on paragraph 171 0 Nojiri, H. et al. Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. Strain CA10. J. Bacteriol. 181, 3105–3113 (1999).

172 Leave a comment on paragraph 172 0 PubMed

173 Leave a comment on paragraph 173 0 60.

174 Leave a comment on paragraph 174 0 Schuler, L. et al. Characterization of a novel angular dioxygenase from fluorene-degrading Spingomonas sp. strain LB126. Appl. Environ. Microbiol. 74, 1050–1057 (2008).

175 Leave a comment on paragraph 175 0 PubMed

176 Leave a comment on paragraph 176 0 61.

177 Leave a comment on paragraph 177 0 Alemayehu, D., Gordon, L. M., O’Mahony, M. M., O’Leary, N. D. & Dobson, A. D. Cloning and functional analysis by gene disruption of a novel gene involved in indigo production and fluoranthene metabolism in Pseudomonas alcaligenes PA-10. FEMS Microbiol. Lett. 239, 285–293 (2004).

178 Leave a comment on paragraph 178 0 PubMed

179 Leave a comment on paragraph 179 0 62.

180 Leave a comment on paragraph 180 0 Thompson, L. C. et al. 2-Hydroxychromene-2-carboxylic acid isomerase: a kappa class glutathione transferase from Pseudomonas putidaBiochemistry 46, 6710–6722 (2007).

181 Leave a comment on paragraph 181 0 PubMed

182 Leave a comment on paragraph 182 0 63.

183 Leave a comment on paragraph 183 0 Keck, A. et al. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152, 1929–1940 (2006).

184 Leave a comment on paragraph 184 0 PubMed

185 Leave a comment on paragraph 185 0 64.

186 Leave a comment on paragraph 186 0 Liu, T. T. et al. Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB 12038. Appl. Microbiol. Biotechnol. 90, 671–678 (2011).

187 Leave a comment on paragraph 187 0 PubMed

188 Leave a comment on paragraph 188 0 65.

189 Leave a comment on paragraph 189 0 Brzostowicz, P. C., Reams, A. B., Clark, T. J. & Neidle, E. L.Transcriptional cross-regulation of the catechol and protocatechuate branches of the beta-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp strain ADP1 pobA gene. Appl. Environ. Microbiol.69, 1598–1606 (2003).

190 Leave a comment on paragraph 190 0 PubMed

191 Leave a comment on paragraph 191 0 66.

192 Leave a comment on paragraph 192 0 Arias-Barrau, E. et al. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putidaJ. Bacteriol. 186, 5062–5077 (2004).

193 Leave a comment on paragraph 193 0 PubMed

194 Leave a comment on paragraph 194 0 67.

195 Leave a comment on paragraph 195 0 Lee, S. Y., Park, S., Oh, T. K. & Yoon, J. H. Celeribacter baekdonensis sp. nov., isolated from seawater, and emended description of the genus Celeribacter Ivanova et al. 2010. Int. J. Syst. Evol. Microbiol.62, 1359–1364 (2012).

196 Leave a comment on paragraph 196 0 PubMed

197 Leave a comment on paragraph 197 0 68.

198 Leave a comment on paragraph 198 0 Ausubel, F. M. et al. Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology (Wiley, New York, 2002).

199 Leave a comment on paragraph 199 0 69.

200 Leave a comment on paragraph 200 0 Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

201 Leave a comment on paragraph 201 0 PubMed

202 Leave a comment on paragraph 202 0 70.

203 Leave a comment on paragraph 203 0 Delcher, A. L., Bratke, K. A., Powers, E. C. & Salzberg, S. L.Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007).

204 Leave a comment on paragraph 204 0 PubMed

205 Leave a comment on paragraph 205 0 71.

206 Leave a comment on paragraph 206 0 Fukao, M. et al. Genomic analysis by deep sequencing of the probiotic Lactobacillus brevis KB290 harboring nine plasmids reveals genomic stability. PLoS ONE 8, e60521 (2013).

207 Leave a comment on paragraph 207 0 PubMed

208 Leave a comment on paragraph 208 0 72.

209 Leave a comment on paragraph 209 0 Marx, C. J. & Lidstrom, M. E. Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques 33, 1062–1067 (2002).

210 Leave a comment on paragraph 210 0 PubMed

211 Leave a comment on paragraph 211 0 73.

212 Leave a comment on paragraph 212 0 Denef, V. J. et al. Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl. Environ. Microbiol. 72, 585–595 (2006).

213 Leave a comment on paragraph 213 0 PubMed

214 Leave a comment on paragraph 214 0 74.

215 Leave a comment on paragraph 215 0 Liu, C. & Shao, Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int. J. Syst. Evol. Microbiol. 55, 1181–1186 (2005).

Source: https://www.southalabamamicrobiology.net/paper-4-reference-list/